北极星储能网讯:为什么要化成?
电池制造后,通过一定的充放电方式将其内部正负极物质激活,改善电池的充放电性能及自放电、储存等综合性能的过程称为化成。
什么是化成?
锂电芯的化成是电池的初使化,使电芯的活性物质激活,即是一个能量转换的过程。
锂电芯的化成是一个非常复杂的过程,同时也是影响电池性能很重要的一道工序,因为在Li+第一次充电时,Li+第一次插入到石墨中,会在电池内发生电化学反应,在电池首次充电过程中不可避免地要在碳负极与电解液的相界面上、形成覆盖在碳电极表面的钝化薄层,人们称之为固体电解质相界面或称SEI膜(SOLIDELECTROLYTEINTERFACE)。
SEI膜的形成一方面消耗了电池中有限的锂离子,这就需要使用更多的含锂正极极料来补偿初次充电过程中的锂消耗;另一方面也增加了电极/电解液界面的电阻造成一定的电压滞后。
化成原理
SEI膜形成机制
⑴在一定的负极电位下,电极/电解液相界面的锂离子与电解液中的溶剂分子等发生不可逆反应;
⑵不可逆反应主要发生在电池首次充电过程中;
⑶电极表面完全被SEI膜覆盖后,不可逆反应即停止;
⑷一旦形成稳定的SEI膜,充放电过程可多次循环进行
SEI膜组成成分
正极确实也有层膜形成,只是现阶段认为其对电池的影响要远远小于负极表面的SEI膜,因此本文着重讨论负极表面的SEI膜(以下所出现SEI膜未加说明则均指在负极形成的)。
负极材料石墨与电解液界面上通过界面反应能生成SEI膜,多种分析方法也证明SEI膜确实存在,厚度约为100~120nm,其组成主要有各种无机成分如Li2CO3、LiF、Li2O、LiOH等和各种有机成分如ROCO2Li、ROLi、(ROCO2Li)2等。
烷基碳酸锂和Li2CO3均为3.5V前形成SEI膜的主要成分,烷基碳酸锂和烷氧基锂为3.5V后形成SEI膜的主要成分。
化成气体产生与电压关系
化成过程中其产气总量于电压3.0V处最大,而当化成电压大于3.5V后,则产生的气体就迅速减少.化成电压小于2.5V时,产生的气体主要为H2和CO2等;随着化成电压的升高,在3.0V~3.8V的范围内,气体的组成主要是C2H4,超出3.8V以后,C2H4含量显著下降,此时产生的气体成分主要为C2H6和CH4.其中,3.0V~3.5V之间为SEI层的主要形成电压区间.而在这一电压区间,产生的气体组分主要为C2H4.因此可以认为,这时SEI层的形成机理主要是电解液溶剂中EC的还原分解.
化成产生气体分类